Бактериальное выщелачивание

Установка по бактериальному выщелачиванию медиБАКТЕРИАЛЬНОЕ ВЫЩЕЛАЧИВАНИЕ металлов (а. bacterial lixiviation, bacterial leaching; н. bakterielle Auslaugung; ф. lessivation bacterienne, lessivage bacterien; и. lixiviacion bacteriana) — извлечение химических элементов из руд, концентратов и горных пород с помощью бактерий или их метаболитов. Большая часть совмещается с выщелачиванием слабыми растворами серной кислоты бактериального и химического происхождения, а также растворами, содержащими органические кислоты, белки, пептиды, полисахариды и т.д.

Выщелачивание металлов из руд известно с давних времён. В 1566 в Венгрии осуществляли полный цикл выщелачивания с использованием системы орошения, в Германии выщелачивание меди из отвалов практиковалось с 16 века. В 1725 в Испании на руднике Рио-Тинто выщелачивали медные руды. Это были первые практические применения Бактериального выщелачивания, механизм которого (участие бактерий) не был известен. В 1947 американскими микробиологами выделен из рудничных вод ранее неизвестный микроорганизм Thiobacillus (Th.) ferrooxidans, который окисляет практически все сульфидные минералы, серу и ряд её восстановленных соединений, закисное железо, а также Cu+, Se2-, Sb3+, U4+ при pH 1,0-4,8 (оптимум 2,0-3,0) и t 5-35°С (оптимум 30-35°С). Число клеток этих бактерий в зоне окисления сульфидных месторождений достигает 1 млн. — 1 млрд. в 1 г руды или 1 мл воды.

Выщелачивание меди с помощью Th. ferrooxidans запатентовано в США в 1958 (С. Циммерлей и др.). В CCCP исследования начаты в конце 50-х годов. Позже было показано, что в сульфидных рудах распространены и другие бактерии, окисляющие Fe2+, S0 и сульфидные минералы, — Leptospirillum (L.) ferrooxidans, Thiobacillus organopatus, Thiobacillus thiooxidans, Sulfobacillus (S.) thermosulfidooxidans и др. L. ferrooxidans окисляет Fe2+, а при совместном присутствии с Th. thiooxidans или Th. organoparus — сульфидные минералы при pH 1,5-4,5 (оптимум 2,5-3,0) и t около 28°С S. thermosulfidooxidans окисляет Fe2+, S0 и сульфидные минералы при pH 1,9-3,5 и t 50°С. Ряд других термофильных бактерий окисляет Fe, S и сульфидные минералы при pH 1,4-3,0 и t 50-80°С. Процессы окисления неорганических субстратов служат для этих бактерий единственным источником энергии. Углерод для синтеза органических веществ клеток они получают из CO2, а другие элементы — из руд и растворов.

Реклама



При бактериальном выщелачивании руд цветных металлов широко используются тионовые бактерии Th. ferrooxidans, которые непосредственно окисляют сульфидные минералы, серу и железо и образуют химический окислитель Fe3+ и растворитель — серную кислоту. Поэтому расход Н2SO4 при бактериальном выщелачивании снижается. Fe3+ — основной окислитель при выщелачивании руд урана, ванадия, меди из вторичных сульфидов и других элементов. Наибольшая скорость бактериального выщелачивания достигается при тонком измельчении руды или концентрата (200 меш и меньше), в плотных пульпах (до 20% твёрдого), при активном перемешивании и аэрации пульпы, а также оптимальных для бактерий pH, температуре и высоком содержании клеток бактерий (109-1010 в 1 мл пульпы). При благоприятных условиях из концентратов в раствор за 1 ч переходит Cu до 0,7 г/л, Zn — 1,3, Ni — 0,2 и т.д. До 90% As извлекается из олово- и золотосодержащих концентратов за 70-80 ч. Скорость окисления сульфидных минералов в присутствии бактерий возрастает в сотни и тысячи раз, а Fe2+ примерно в 2 • 105 раз по сравнению с химическим процессом. Селективность процесса бактериального выщелачивания цветных металлов определяется как кристаллохимическими особенностями сульфидов, так и их электрохимическим взаимодействием. Редкие элементы входят в кристаллические решётки сульфидных минералов или вмещающих пород и при их разрушении переходят в раствор и выщелачиваются. Следовательно, в выщелачивании редких элементов бактерии играют косвенную роль.

Бактериальное выщелачивание цветных металлов проводят из отвалов бедной руды (кучное) и из рудного тела (подземное). Технологическая схема бактериального выщелачивания приведена на рис.

Орошение руды в отвале или в рудном теле осуществляется водными растворами Н2SO4, содержащими Fe3+ и бактерии. Раствор подаётся через скважины при подземном или путём разбрызгивания на поверхности при кучном выщелачивании. В руде в присутствии О2 и бактерий идут процессы окисления сульфидных минералов и медь переходит из нерастворимых соединений в растворимые. Раствор, содержащий медь, поступает на цементационную или другие установки (сорбция, экстракция) для извлечения меди, затем на отвал или рудное тело (схема замкнутая). Интенсификация выщелачивания достигается активизацией жизнедеятельности тионовых и других сульфидокисляющих бактерий, присутствующих в самой руде и адаптированных к конкретным условиям среды (тип руды, химический состав растворов, температура и т.д.). Для этого необходимы pH 1,5-2,5, высокий окислительно-восстановительный потенциал (Eh 600-750 мВ), благоприятный и стабильный химический состав растворов, что достигается путём их регенерации и режима аэрирования и увлажнения (орошения) руды. В отдельных случаях следует добавлять соли азота и фосфора, а также бактерии, выращенные на оборотных растворах в прудах-регенераторах. Число клеток бактерий в выщелачивающем растворе и руде должно быть не ниже 106-107 соответственно в 1 мл или 1 г. Себестоимость 1 т меди, полученной этим способом, в 1,5-2 раза ниже, чем при обычных гидрометаллургических или пирометаллургических способах.

Бактериальное выщелачивание упорных сульфидных концентратов проводится прямоточно в серии последовательно соединённых чанов с перемешиванием и аэрацией аэрлифтом при t 30°С, pH 2,0-2,5 и концентрации клеток Th. ferrooxidans 1010-1011 в 1 мл пульпы. Схема переработки сульфидных концентратов замкнутая. Оборотные растворы после частичной или полной регенерации используются в качестве питательной среды для бактерий и выщелачивающего раствора. Наиболее активными являются культуры бактерий, адаптированные к комплексу факторов (pH, тяжёлые металлы, тип концентрата и т.д.) в условиях активного процесса бактериального выщелачивания. Примеры бактериального выщелачивания в чанах: из коллективных медно-цинковых концентратов за 72-96 ч извлекаются в раствор до 90-92% Zn и Cd при извлечении Cu и Fe соответственно около 25% и 5%; из свинцовых концентратов можно полностью извлечь Cu, Zn и Cd. В растворах достигаются концентрации металлов: Cu до 50 г/л, Zn до 100 г/л и т.д. В олово- и золотосодержащих мышьяковистых концентратах арсенопирит практически полностью разрушается за 120 ч, что позволяет в одних случаях очистить концентраты от вредной примеси мышьяка, в других — при последующем цианировании извлечь до 90% золота.

В различных странах ведутся также исследования по бактериальному выщелачиванию металлов из отходов обогащения, пылей, шлаков и т.д. Разрабатываются способы бактериального выщелачивания золота, марганца, цветных металлов, а также обогащения бокситов с помощью гетеротрофных микроорганизмов (микроскопические грибы, дрожжи, бактерии). Эти микроорганизмы в качестве источника энергии и углерода используют органические вещества.

Ведущее значение при выщелачивании с помощью гетеротрофов играют процессы комплексообразования органических соединений с металлами, а также перекиси и гуминовые кислоты.

Внедрение бактериального выщелачивания, как и других гидрометаллургических способов добычи металлов, имеет большое экономические значение. Расширяются сырьевые ресурсы за счёт использования бедных и потерянных в недрах руд и т.д. Бактериальное выщелачивание обеспечивает комплексное и более полное использование минерального сырья, повышает культуру производства, не требует создания сложных горнодобывающих комплексов, благоприятно для охраны окружающей среды.

В промышленных масштабах Бактериальное выщелачивание применяется для извлечения меди из забалансовых руд в США, Перу, Испании, Португалии, Мексике, Австралии, Югославии и других странах. В ряде стран (США, Канада, ЮАР) бактерии используются для выщелачивания урана. В CCCP Бактериальное выщелачивание меди внедряется на ряде месторождений.